

Product Information Bulletin

Better building ideas from PFB 💜				
BULLETIN NO.	280			
ISSUED:	April 19, 2015			
REPLACES:	December 9, 2013			

PlastiSpan[®] RN Insulation for Insulating Sheathing - NBC 2010 Page 1 of 4

PlastiSpan[®] RN insulation applied to the exterior of above-grade wood frame walls is a great way to increase the energy efficiency of that portion of the home. PlastiSpan RN insulating sheathing is manufactured with the long edges routed out to fit a 19 x 64 mm (1" x 3") nailer. The recessed nailer provides a flat surface for the installation of exterior cladding.

PlastiSpan RN insulation installed over the exterior of wood frame walls increases the effective thermal resistance (RSI_{eff}/R_{eff}) of the total wall assembly because it eliminates thermal bridges due to wood studs which leave approximately 20% of the wall area without insulation.

Standard Dimensions					
Width Length Thickness					
406 or 610 mm	2440 mm	Minimum 38 mm			
(16" or 24") (8 ft.) (1 ½" in.)					

PlastiSpan RN Insulation	ASTM Test	Units	CAN/ULC-S701		
Material Properties ¹	Method	Units	Type 1	Type 2	Type 3
Thermal Resistance	C518	m²₌°C/W	0.65	0.70	0.74
Minimum per 25 mm (inch)	0310	(ft²∙h∙°F/BTU)	(3.75)	(4.04)	(4.27)
Compressive Resistance ²	D1621	kPa	70	110	170
Minimum @ 10% Deformation	D1021	(psi)	(10)	(16)	(25)
Flexural Strength Minimum	C203	kPa	170	240	300
	0203	(psi)	(25)	(35)	(44)
Water Vapour Permeance	E96	ng/(Pa·s·m²)	300	200	130
Maximum		(Perms)	(5.0)	(3.5)	(2.25)
Water Absorption Maximum	D2842	% By volume	6.0	4.0	2.0
Dimensional Stability Maximum, 7 Days @ 70 ± 2 ℃ (158 ± 4 ℉)	D2126	% Linear Change	1.5	1.5	1.5
Limiting Oxygen Index Minimum	D2863	%	24	24	24

1. Material properties are third party certified to CAN/ULC-S701-11, *Standard for Thermal Insulation, Polystyrene, Boards and Pipe Covering*, under a quality listing program administered by Intertek Testing Services.

2. The minimum compressive resistance of PlastiSpan Type 3 insulation exceeds the requirement for CAN/ULC-S701, Type 3.

Plasti-Fab, PlastiSpan, DuroFoam, DuroFloat, GeoSpec, GeoSpan, GeoVoid, Advantage ICF System and Insulspan are registered trademarks of Plasti-Fab Ltd. Printed in Canada

Copyright © 2013 by Plasti-Fab Ltd. All rights reserved.

PlastiSpan[®] RN Insulation Used as Insulating Sheathing Material - NBC 2010 Product Information Bulletin 280

Page 2 of 4

This bulletin addresses the use of PlastiSpan RN insulating sheathing board applied to the exterior of above grade walls in compliance with the National Building Code of Canada 2010 (NBC 2010).

1. Air Barrier System Requirements

Article 9.25.3.1. requires wall, ceiling and floor assemblies separating conditioned space from unconditioned space or from the ground to be constructed so as to include an air barrier system that will provide a continuous barrier to air leakage. PlastiSpan RN insulation may be used as one component in an air barrier system; however, air barrier system design must consider requirements for sealing of all penetrations of the air barrier system, such as those created by the installation of doors, windows, electrical wiring, electrical boxes, piping or ductwork

2. Vapour Barrier System Requirements

Article 9.25.4.1. requires all thermally insulated wall, ceiling and floor assemblies to be constructed with a vapour barrier sufficient to prevent condensation. PlastiSpan RN insulating sheathing is not intended to provide the principal protection against vapour diffusion in an above grade wall application. See requirements related to low air- and vapour-permeance materials below.

3. Position and Properties of PlastiSpan RN Insulating Sheathing

Subsection 9.25.5.1. addresses low air- and vapour-permeance materials and implications for moisture accumulation. Because PlastiSpan RN insulating sheathing may have an air leakage characteristic less than 0.1 L/(s•m²) at 75 Pa and a vapour permeance characteristic less than 60 ng/(Pa•s•m²) dependent upon product type, the provisions of Article 9.25.5 should be considered.

Article 9.25.5.2 permits the use of insulating sheathing meeting the above criteria on the exterior of an insulated frame wall based upon the *ratio of outboard to inboard thermal resistance* for specific heating degree-day (HDD) ranges. Wall assemblies with ratio of outboard to inboard thermal resistance values greater than those given in Table 9.25.5.2 ensure that the inner surface of the insulating sheathing is likely to be warm enough for most of the heating season such that no significant accumulation of moisture will occur. As well, the vapour barrier function has to be provided by a separate building element installed on the warm side of the assembly. For additional information on assumptions used in developing Table 9.25.5.2., refer to NBC 2010 Appendix note A-9.25.5.2.

4. Insulating Sheathing in lieu of Sheathing Membrane

Subclause 9.27.3.4.(2)(b)(i) states that a separate sheathing membrane is not required over insulating sheathing where the joints between boards are sealed. Therefore, when the joints between PlastiSpan RN insulation boards are sealed, a separate sheathing membrane is not required. Refer to Plasti-Fab PIB No. 205 for additional information on installation requirements.

5. Effective Thermal Resistance (RSI_{eff}/R_{eff}) of Wall Assemblies with PlastiSpan RN Insulation

NBC 2010, Section 9.36 provides energy efficiency requirements for buildings 3 storeys or less in building height, having a building area not exceeding 600 m^2 and used for major occupancies classified as residential occupancies.

Energy efficiency requirements in NBC 2010, Subsection 9.36.2. are based upon minimum *effective thermal resistance* (RSI_{eff}/R_{eff}) of building assemblies which includes the effect of thermal bridging due to repetitive structural members such as wood framing members in wall or roof assemblies calculated using the formula below.

 $RSI_{eff}(R_{eff}) = \frac{100\%}{RSI_{F}(R_{F})} + \frac{\% \text{ Area Cavity}}{RSI_{C}(R_{C})} + RSI(R) \text{ Continuous Material Layers}$

Table 1 provides *minimum* RSI_{eff}/R_{eff} requirements per NBC 2010 Table 9.36.2.6.B. for above grade walls in buildings where a heat recovery ventilator (HRV) is installed. Table 3 provides minimum ratio of outboard to inboard insulation as per NBC2010 Table 9.25.5.2.

PlastiSpan[®] RN Insulation Used as Insulating Sheathing Material - NBC 2010 Product Information Bulletin 280

Page 3 of 4

Table 1 - Minimum RSI _{eff} /R _{eff} Where Heat Recovery Ventilator (HRV) Installed							
NBC 2010 Climate Zones	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8	
Heating Degree-Days (HDD) Celsius Degree-Days	< 3,000	3,000 to 3,999	4,000 to 4,999	5,000 to 5,999	6,000 to 6,999	≥ 7,000	
RSI _{eff} – m ² •°C/W	2.78	2.97	2.97	2.97	3.08	3.08	
R _{eff} – ft ² •hr•°F/BTU	15.8	16.9	16.9	16.9	17.5	17.5	

Table 2 - Minimum Ratio of Total Thermal Resistance Outboard to Thermal Resistance Inboard

Heating Degree-Days	Ratio	Heating Degree-Days	Ratio
up to 4999	0.20	9000 to 9999	0.55
5000 to 5999	0.30	10000 to 10999	0.60
6000 to 6999	0.35	11000 to 11999	0.65
7000 to 7999	0.40	12000 or higher	0.75
8000 to 8999	0.50		

Energy consumption required to keep the interior of a small building at 21°C when the outside air temperature is below 18°C is roughly proportional to the difference between 18°C and the outside temperature. This relationship holds true for average conditions of wind, radiation, exposure, and internal sources. A heating degree-day (HDD) is defined as the number of degrees the mean temperature (average of high and low temperature) for a given day is below 18°C. The sum of all the daily HDD contributions results in the annual HDD for a location.

Province	Building Location	HDD (Celsius Degree Days)	Province	Building Location	HDD (Celsius Degree Days)
	Victoria	2,650		Montréal	4,200
Duitich	Vancouver	2,950		Trois-Rivières	4,900
British Columbia	Kelowna	3,400	Quebec	Québec	5,080
Columbia	Whistler	4,180	Quebec	Gaspé	5,500
	Dawson Creek	5,900		Baie-Comeau	6,020
	Lethbridge	4,650		Schefferville	8,550
Alberta	Calgary	5,000	New Brunswick	Campbellton	5,500
Alberta	Edmonton	5,400		Edmunston	5,400
	Fort McMurray	6,550	Druitswick	Fredericton	4,650
	Moose Jaw	5,270		Digby	4,020
	Regina	5,600	Nova Scotia	Truro	4,650
Saskatchewan	Saskatoon	5,700		Halifax	4,200
	Prince Albert	6,100	PEI	Charlottetown	4,600
	Uranium City	7,500	Newfoundland	St. John's	4,800
	Winnipeg	5,670		Labrador City	7,900
Manitoba	Flin Flon	6,440	Yukon	Dawson	8,400
	Thompson	7,600			

Table 3 - NBC 2010, Division B, Appendix C - Annual HDD (Celsius Degree-Days)

Table 4 provides RSI_{eff}/R_{eff} calculations for a typical wall assemblies using PlastiSpan RN continuous insulating sheathing to meet minimum requirements per NBC 2010, Table 9.36.2.6.B. for buildings where a heat recovery ventilator (HRV) is installed **for** Climate Zones 4 to 7a.

 $\label{eq:plastiSpan} PlastiSpan^{\textcircled{R}} RN \ Insulation \ Used \ as \ Insulating \ Sheathing \ Material - NBC \ 2010 \\ Product \ Information \ Bulletin \ 280 \\ \end{array}$

Page 4 of 4

Table 4 - <i>RSI_{eff}/R_{eff}</i> of Typical Wall Asse	embly with Pla	stiSpan RN Ins	ulation		
Wall Construction – Climate Zones 4 to 7a Heating Degree Days Less Than 6,000		RSI _{eff} Calculation			
		Framed Portion C		Continuous	
Theating Degree Days Less Than 0,000	RSI _F	RSI _c	Layers		
Outside Air Film				0.03	
Vinyl Cladding				0.11	
1-5/8" (41.3 mm) PlastiSpan RN Insul	ation			1.07	
Stud Cavity Insulation			2.29		
2 x 4 Wood Stud @ 16" (406 mm) o.c.		0.76			
6 mil polyethylene vapour barrier					
1/2" (12.7 mm) Gypsum Wall Board				0.08	
Inside Air Film				0.12	
R	SI Sub-Totals	0.76	2.29	1.41	
% Area of Each	n Component	23%	77%	100%	
	RSI _{eff} (R _{eff})	RSI-2.97 (R-16.9)			
Ratio o	f Outboard to	Inboard Insulat	ion Calculation		
Outboard Insulation Components	RSI	Inboard Insulation Components		RSI	
Outside air film 0.03		Stud cavity insulation		2.29	
Vinyl cladding 0.11		Gypsum board		0.08	
1 5/8" (41.3 mm) PlastiSpan Insulation 1.07		Inside air film		0.12	
Total Outboard RSI	1.21	Total Inboard RSI		2.49	
Ratio of Outboard to Inboard	1.2	0.49			

Table 5 provides RSIeff/Reff calculations for a typical wall assemblies using PlastiSpan RN continuous insulating sheathing to meet minimum requirements per NBC 2010, Table 9.36.2.6.B. for buildings where a heat recovery ventilator (HRV) is installed for Climate Zones 7b to 8.

Table 5 - RSI _{eff} /R _{ef}	of Typical Wall	Assembly with	PlastiSpan	RN Insulation
I able 5 - Noleff Nef	for rypical wait	Assembly with	riasuspan	

Wall Construction – Climate Zones 7b and 8 Heating Degree Days 6,000 or Greater		RSI _{eff} Calculation			
		Framed	Continuous		
Heating Degree Days 0,000 of Greate	RSI _F	RSI _c	Layers		
Outside Air Film				0.03	
Vinyl Cladding				0.11	
2" (50.8 mm) PlastiSpan RN Insulatio	n			1.32	
Stud Cavity Insulation			2.29		
2 x 4 Wood Stud @ 16" (406 mm) o.c.		0.76			
6 mil polyethylene vapour barrier					
1/2" (12.7 mm) Gypsum Wall Board				0.08	
Inside Air Film				0.12	
R	SI Sub-Totals	0.76	2.29	1.66	
% Area of Each	Component	23%	77%	100%	
	RSI _{eff} (R _{eff})	RSI-3.22 (R-18.3)			
Ratio of Outbo	ard to Inboard	d Insulation Cal	culation		
Outboard Insulation Components	RSI	Inboard Insula	ation Component	s RSI	
Outside air film	0.03	Stud cavity insulation		2.29	
Vinyl cladding 0.11		Gypsum board		0.08	
2" (51 mm) PlastiSpan Insulation 1.32		Inside air film		0.12	
Total Outboard RSI 1.46		Total Inboard RSI		2.49	
Ratio of Outboard to Inboard	1.4	46/2.49	0.59		